

The $\mathcal{M}^*_{v3.2}$ Simulator Tutorial Booklet

EOLAS Designs

Contents

1	Tutorial: Silicon nanowire FET 1.1 Renaming simulations 1.2 Comparing gate sweeps 1.3 Drain sweeps	2 16 16 19
2	Tutorial: Germanium FinFET	22
3	Tutorial: Silicon single-electron transistor (SET)	33
4	Tutorial: Silicon p-type planar FET 4.1 k-point sampling	43 46
5	Tutorial: $In_{0.53}Ga_{0.47}As$ nanosheet FET	50
6	Tutorial: Scattering in silicon nanowire FET6.1Acoustic phonon scattering	62 62 63

Figure 1: Si NWFET: Schematic showing device geometry. Red represents silicon, gray represents silicon dioxide, and blue the gate electrode. Regions in different shades of red represent variations in doping across different device regions.

1 Tutorial: Silicon nanowire FET

This section illustrates the process of preparing, running, and analysing a simulation of a silicon nanowire field-effect transistor (Si NWFET) with homogeneous geometry along its transport axis (i.e. constant cross-section) by employing the ballistic FUMS method. We shall simulate a silicon $\langle 100 \rangle$ gate-all-around device with cylindrical cross-section and a radius of 1.5 nm, a channel length of 10 nm, and 8 nm long source/drain extension regions. Figure 1 shows a schematic of the device geometry, highlighting variations in the doping profile across the silicon portion of the nanowire with different shades of red. Source and drain regions are doped n-type with a carrier concentration of 2×10^{20} N/cm³ while the channel is intrinsic with a much lower carrier density, which we shall neglect and take to be zero.

In order to begin preparing the input files for simulating this device, launch the \mathcal{M}^* GUI, click New and choose a folder to save your results to. Navigate to the Device panel on the left pane and set device geometry parameters as described in fig. 1 by filling out values as shown in fig. 2. Leave Gridpoint spacing and Surface roughness fields to their default values. You may switch to the Preview tab to visualise the device structure and ensure it corresponds to your intended design.

		M* Simulator GUI			×
Workspace directory navigation New Open Save Save	Run Simula /e as	ation Quit	Workspace /home/u	user/Simulations/1-Si_NWFET	
 Input Device Material Control Output 	Parameters Pre Device type Device type (Num. regions (Gate-all-around cylinder - 3 ‡	Gridpoint spacing X (transport) 0.2 nm Y 0.2 nm Z 0.2 nm	Surface roughness RMS 0.0 Corr. length 0.0 Manual seed Autocorrelation function Gaussian	nm nm ial
	Region Set all regions 1 - Source 2 - Channel 3 - Drain	Length 8.0 10.0 8.0	Radius 1.5 1.5 1.5	Oxide Thickness 1.0 1.0 1.0	Gated
Logs Output Warnings					

Figure 2: In the Device panel, specify a Gate-all-around cylinder with 3 regions, with dimensions shown above. Make sure region 2 (i.e. the device channel) is Gated.

Once you have completed filling out the Device panel, select Material in the left pane to enter the material properties for each region. Select Si, $(010)/\langle 100 \rangle$, n-type from the dropdown menu to select the device's semiconductor material across all regions.¹ Cycle through regions 1 - 3 using the region *spinner* and ensure the oxide permittivity is set to 3.9 -the relative permittivity of silicon dioxide-, and Carrier density values are set as 2×10^{20} cm⁻³ for source & drain regions (regions 1 and 3) and 0.0 for the channel region (region 2). fig. 3 shows values set for the source region.

¹Although \mathcal{M}^* supports simulating devices with different materials in different regions, it requires manual editing of input files as the current version's GUI does not include support for building devices with heterogeneous materials. Selecting a material anywhere in the Material panel sets the main electronic structure properties for all regions.

	M* Simulator	GUI				×
Workspace directory navigation New Open Save Save	Run Simulation Q	uit Quit	Norkspace /home	e/user/Simulations	s/1-Si_NWFET	
 Input Device Material Control Output 	Si, (010)/<100>, n-type Carrier type • electro Box permittivity (relative) 3.9 Region 1 Carrier density (N / cm³) Semiconductor permittivity (relative) Oxide permittivity (relative) Valleys Effective mass (relative) Valley 1 Valley 2 Valley 3	 ns ho 2.000e+20 11.7 3.9 3 x (transport) 0.891 0.201 0.201 	les y (horizontal) 0.201 0.891 0.201	z (vertical) 0.201 0.201 0.891	yz (shear) inf inf inf	
Logs Output Warnings						

Figure 3: In the Material panel, cycle through regions 1 - 3 and ensure oxide permittivity is set to 3.9, and Carrier density values are set as 2×10^{20} cm⁻³ for source & drain regions (regions 1 and 3), and 0.0 for the channel region (region 2).

To finish setting all input parameters for our simulation, select Control on the left pane and fill out values as shown in fig. 4:

- Method select the fast uncoupled mode-space method -suitable for devices with both homogeneous and small cross-sections-, with 3 subbands per valley and Ballistic scattering
- **Temperature** leave a value of 300 K (26.85 °C)
- Voltages input a Drain voltage of 0.40 V and a Gate voltage of -0.25 V. Select Iterate over -> Gate, input a Voltage limit of 0.550 V and a Voltage stepsize of 0.05 V to indicate a gate bias sweep in the [-0.25, 0.55] V range, in steps of 0.05 V
- Save enable saving of both electric potential and carrier density, and set Save every to 1 so data is saved for all bias points computed
- Convergence set the Potential threshold to 10^{-4} eV , Carrier Dens. threshold to 1 %, and the Initial mixing coefficient to 0.05. Enable Adaptive mixing and set the minimum and maximum coefficients to 0.01 and 0.3, respectively

	м	* Simulator GUI		×
Workspace directory navigation New Open Save Save	Run Simulation	Quit Quit	Workspace /home/user/Simulations/1-Si_NWFET	
Input Device Material Control Output	Method Mode-space method Subbands NEGF energy resolution Scattering Temperature Temperature Voltages Gate voltage Gate voltage Drain voltage Iterate over Gate Voltage limit 0.55 Voltage stepsize 0.05	fums 3 1e-3 eV Ballistic K V V V V V V V V	Save ✓ Save electric potential ✓ Save carrier density Save every 1 bias points Convergence Potential threshold 1.0 % Initial mixing coefficient 0.05 ✓ Adaptive mixing Min. mixing coefficient 0.01 Max. mixing coefficient 0.3 k points Periodic device k points 5	

Figure 4: In the Control panel, fill out fields with values shown in the figure.

Once you have finished setting all input variables, you are now ready to launch your first \mathcal{M}^* simulation: click **Run** at the top pane of the GUI to begin. Once your simulation has been started, a subfolder will be created inside your current workspace directory where all associated output files will be saved. You can follow simulation progress in the tabs located at the bottom pane of the GUI:

- Logs shows the contents of the \mathcal{M}^* logfile, which is also saved to your simulation folder under the filename mstar_log.out. It contains a header with information about the simulated device and subsequently includes useful information on simulation progress. After each iteration, \mathcal{M}^* will write a line with six columns to this file with the following quantities:
 - Iter: iteration index for the present bias point
 - Vds (V): drain-source bias in volt
 - Vgs (V): gate-source bias in volt
 - Ids (A): drain-source current in ampere
 - R[Q] (%): charge residue in percentage with respect to that iteration's input charge density
 - dV (V): maximum difference in electric potential between the last two iterations in volt

- Output shows \mathcal{M}^* 's standard output stream stdout. After each iteration, the contents of this tab will get updated with the following information:
 - Method: mode-space method employed
 - Drain-source bias: drain-source bias in volt
 - Gate-source bias: gate-source bias in volt
 - Drain current: drain current in ampere
 - Potential convergence: maximum difference in electric potential between the last two iterations followed by the requested convergence threshold in parenthesis, both in volt
 - Density convergence: charge residue in percentage with respect to that iteration's input charge density, followed by the requested convergence threshold in parenthesis
 - Linear mixing coeff: mixing coefficient used in the present iteration
- Warnings shows \mathcal{M}^* 's standard error stream stderr, containing any errors or warnings that occur during the simulation

When the simulation has finished, both Logs and Output tabs will show a summary of the time taken to run the simulation, with the time spent in each \mathcal{M}^* module indicated. You may then begin analysing results² by expanding the Output section on the left pane to show a list of runs performed so far in the current workspace. Every simulation launched by clicking the Run button will be listed under the default name run_<N>, with <N> an incremental index (e.g. run_0, run_1, etc.), and the corresponding output data will be saved to subfolders with the same name. Expand the item labelled run_0 to list output quantities associated with the simulation just performed:

 $^{^{2}}$ Results for each bias point become available for analysis as soon as they have been converged

	M* Simulator GUI	×
Workspace directory navigation New Open Save Save	Run Simulation Quit as Run Stop Quit Workspace (home/user/Simulations/1-Si_NWFET)	
 Input Device Material Control Output I-V curves (gate sweep) run_0 Geometry Gate sweep Bias points (Vds 0.400 V) 	Geometry Semiconductor + oxide + gate View panel	
Logs Output Warnings		

Figure 5: Once your simulation has finished running, expand the Output section on the left pane to list all available runs; select run_O to list all output corresponding to the first simulation just completed. Clicking Geometry displays a 3D render of the simulated device geometry.

• Geometry allows visualising a 3D render of the simulated device geometry, as shown in fig. 5. A drop-down menu allows choosing between visualising only the semiconductor region, the semiconductor and oxide regions, or all regions including semiconductor, oxide, and gate electrode. You may rotate the 3D model using your mouse's left click button, zoom in or out by holding your mouse's right click button, pan using your mouse's middle button (or shift + left click), and spin using ctrl + left click

Figure 6: Device transfer characteristics are displayed as both semilogarithmic (red, left vertical axis) and linear plots (green, right vertical axis).

- **Gate sweep** expand this item to list the following output available for gate sweep runs:
 - I-V displays a plot of the device's transfer characteristics as both semilogarithmic and linear plots, as shown in fig. 6. The toolbar at the top of all 2D plots in \mathcal{M}^* allows customising the look of the plot and save it as an image file in various formats

Figure 7: Subthreshold swing's dependence with gate bias. This device exhibits values below 70 mV/dec for gate voltages below 0.1 V.

- Subthreshold swing select this item to display a plot showing the $I_D - V_{GS}$ characteristics (semilogarithmic, left vertical axis) and the subthreshold swing computed at each gate bias. As shown below in fig. 7, this device exhibits excellent characteristics with a subthreshold swing below 70 mV/dec for gate voltages below 0.1 V

Figure 8: The device's threshold voltage extracted using the linear extrapolation method.

- Threshold voltage lists all gate bias sweep runs detected in your simulation folder, similar to the previous item in this list. Click on this item to display a plot illustrating the extraction of the device's threshold voltage using the linear interpolation method [1]. Two variations of the method will be employed depending on whether the device is considered to be operating in its linear region ($V_{DS} < 0.1$ V) or in its saturation region ($V_{DS} \ge 0.1$ V). The computed threshold bias is the value of V_{GS} at which the blue line intersects the origin of the vertical left axis (shown in green). The blue line is computed using the slope of the green curve at the point where the magenta curve reaches its maximum value; indicated with a dashed vertical line (see fig. 8)

Figure 9: **3D** data panel displaying electric potential data with the device's geometry overlaid.

- Bias points (Vds 0.400 V) lists all bias points for which output data has been saved to disk. Expand this item to list gate voltages included in the present run –for which drain voltage has been kept to Vds 0.400 V–; expanding items associated with each gate voltage will reveal two sub-items:
 - 3D Data: allows visualising the electric potential or carrier density on 3D grids. Select this item to show a 3D render of the electric potential with a semitransparent device geometry overlaid (fig. 9). The render will show an isosurface for the value input in the corresponding field while contour plots for slices along each cartesian axis are displayed upon ticking Slices Show all; the limits of the colourmap can be manually set using the Range field. Displaying various elements of the device geometry can be controlled via the Geometry dropdown menu. You may select Carrier density in the Data dropdown menu to display a 3D render of that quantity instead, with similar controls available (fig. 10). Clicking the Open Paraview button at the top of this panel will display the 3D data in ParaView, a software package which allows further manipulation and visualisation options should you require so. We refer the reader to their user manual for further information [2, 3]

	M* Sim	ulator GUI ×
Workspace directory navigation Run New Open Save Save as	Simulation Quit Run Stop Quit	Workspace /home/user/Simulations/1-Si_NWFET
 Input Device Material Control Control Control I-V curves (gate sweep) - run_0 Geometry - Gate sweep I-V Subthreshold swing Threshold voltage · Bias points (Vds 0.400 V) - Vgs - 0.250 V Sloces ZD data Pogs - 0.250 V · Vgs - 0.150 V · Vgs - 0.150 V · Vgs - 0.050 V · Vgs - 0.050 V · Vgs - 0.000 V · · · · · · · · · · · · ·	View p r density • re 3.184e+20 N / cm ³ w all y ponductor + oxide + gate •	anel

Figure 10: 3D data panel displaying carrier density data with the device's geometry overlaid. Note the limits of the colourmap have been manually set using the Range fields.

- 2D data: displays a contour plot of the local density of states (LDoS) and line plots indicating band edges for each valley. Additional quantities may be overlaid by ticking the corresponding tickboxes below the plot and clicking the Refresh button, as shown in fig. 11

Figure 11: 2D data panel displaying local density of states, energy-resolved current, and quasi-Fermi level data for an OFF state.

With these visualisation and post-processing tools you may study a device design's figures of merit, and their dependence with various geometrical, electrical, and material parameters. Let us now explore the effects of reducing the gate length from 10 nm to 5 nm on the threshold voltage and subthreshold swing by running a gate sweep simulation with appropriate modifications to the device geometry: Select Input -> Device, change the length of region 2 as shown in fig. 12 and click Run.

	м	* Simulator GUI	x
Workspace directory navigation	Run Simulation Quit	Workspace /home/user/Simulations/1-Si_N	VFET
 ✓ Input Device Material Control > Output 	Parameters Preview Device type Device type Gate-all-around cylinder Num. regions 3	Gridpoint spacing X (transport) 0.2 nm Y 0.2 nm Z 0.2 nm	Surface roughness RMS 0.0 nm Corr. length 0.0 nm Manual seed Autocorrelation function Gaussian
	Region Length Set all regions	Radius 1.5 1.5 1.5 1.5	Oxide Thickness Gated 1.0 1.0 1.0 Control
Logs Output Warnings			

Figure 12: Reduce the length or region 2 from 10 nm to 5 nm in the Input -> Device panel and click Run to study the impact of reducing the device's channel length.

After this second simulation has completed, you will find its results listed under Output->run_1 in the left pane, as shown in fig. 13. Note you can find all input and output data associated with each run in your workspace's subdirectories run_0 and run_1. Navigate to the Subthreshold swing and Threshold Voltage panels of run_1 to observe the impact of reducing the device's gate length in both quantities: the subthreshold swing degrades to values above 100 mV/dec (fig. 14), and the threshold voltage is reduced to approximately 30 mV in what is known as *threshold voltage roll-off* (fig. 14).

		M* Sime	ulator GUI		×
Workspace directory navigation	Run Simulation	Quit			
New Open Save S	ave as Run Stop	Quit	Workspace /home/u	user/Simulations/1-Si_NWFET	
 Input Output I-V curves (gate sweep) run_0 run_1 Geometry Gate sweep Bias points (Vds 0.400 V) 	Geometry Semiconductor + oxide + 9 View panel	jate •			
Logs Output Warnings	Y Z				

Figure 13: Once the second simulation with the reduced gate length finishes, you will find its output listed as run_1.

Figure 14: Reducing the device's gate length results in an increase of the subthreshold swing.

Figure 15: Reducing the device's gate length results in a shift of the threshold voltage towards a lower gate bias. Note simulations listed on the left pane have been renamed to more descriptive names, as discussed in section 1.1

1.1 Renaming simulations

By default, your simulations are labelled using the sequence run_0, run_1, run_2, etc. You may relabel them to something more convenient by either double-clicking their label or selecting the label on the left pane and pressing F2 on your keyboard, and typing a new label. The corresponding subfolder within your workspace will be renamed accordingly.

To facilitate identifying runs performed so far let us rename run_0 to Lg=10nm and run_1 to Lg=5nm, as shown in fig. 15.

1.2 Comparing gate sweeps

We may directly explore the effects of reducing the device's gate length on its transfer characteristics using the Output->I-V curves (gate sweep) panel, as shown in ??. You may select which runs to include in the plot by activating the corresponding tick boxes on the list and clicking the Refresh button below.

Comparing data for both runs we can observe the aforementioned threshold voltage rolloff, as well as a significant increase in OFF currents when reducing the device's channel length. The latter can be attributed to increased source-to-drain tunnelling observed in the shorter channel device's OFF states, as evidenced by the energy-resolved current (red curve) in fig. 17 where most electron transport is located at energies below the channel's

band edge. This can be contrasted against the longer channel device's, where the largest contribution to OFF current occurs at energies above the channel's band edge (fig. 11).

Figure 16: The Output->I-V curves (gate sweep) panel allows shifting curves along the horizontal axis for more meaningful comparisons. The horizontal axis' label has been manually set to V_{OV} using the toolbar at the top of the plot.

In order to make this comparison more meaningful, let us shift their $I_D - V_{GS}$ characteristics by their respective threshold voltages to represent the overdrive voltage along the horizontal axis: $V_{OV} = V_{GS} - V_{Th}$. To do so, type each device's $-V_{Th,Sat}$ (with opposite sign) into their corresponding **shift** fields to align their threshold voltage with the horizontal axis' origin. Click **Refresh** to generate a plot similar to fig. 16. The horizontal axis' label has been manually set to V_{OV} using the toolbar at the top of the plot.

An additional feature becomes apparent after shifting both curves: the device with shorter gate length exhibits decreased ON current when compared to the device with $L_G = 10$ nm at the same overdrive voltage. This is a consequence of larger tunnelling contributions to ON current in the shorter device, as can be seen in fig. 18.

Figure 17: The shorter channel length device's 2D data reveals a stronger source-to-drain tunnelling contribution to OFF currents.

Figure 18: The shorter channel length device's 2D data reveals a strong source-to-drain tunnelling contribution to ON currents.

1.3 Drain sweeps

We continue by exploring the case of simulating a family of drain current curves by computing $I_D - V_{DS}$ characteristics at three different gate voltages. Select Input -> Control on the left pane and modify the Voltage section as (see fig. 19):

- Gate voltage: start by simulating a curve with a gate voltage of 0.2 V
- Drain voltage: set the starting drain voltage to 0.0 V
- Iterate over: select Drain from the dropdown menu
- Voltage limit: set the maximum drain voltage in your sweep to 0.4 V
- Voltage stepsize: leave this value set to 0.05 V

Workspace directory navigation Run Stop Guit Workspace //tome/user/Simulations/1-Si_NWFET * Input: Ball Guit Workspace //tome/user/Simulations/1-Si_NWFET * Input: Method Image: Save as Save * Output Save Save Save carrier density * Sove arrier density Save carrier density Save carrier density * Sove arrier density Save carrier density Save carrier density * Output Temperature 0.0 V * Voltage limit 0.4 V Nather and			M	* Simulat	or GUI
New Open Save Save Run Stop Quit Workspace (/home/user//Simulations/1-Si_NWFET Input Method	Workspace directory navigation	Run Simulation	Quit		
Imput Device Material Method Save Control Mode-space method fums Subbands 3 ' Save electric potential Subbands 3 ' Save every 1 bias points Convergence Temperature ' Convergence Voltages 0.0 V Initial mixing coefficient 0.0 Voltage limit 0.4 V Max.mixing coefficient 0.1 Max.mixing coefficient 0.3 K points K points Voltage stepsize 0.05 V Periodic device k points S otypet Varmings Voltage tepsize Notage K points K points output Varmings Voltage tepsize Notage K points S K points output Varmings Voltage stepsize Notage Notage K points S output Varmings Voltage stepsize Notage Notage K points K Notage Notage Notage Notage Notage Notage K K Voltage stepsize Notage	New Open Save Sav	e as Run	Stop	uit	Workspace /home/user/Simulations/1-Si_NWFET
Device Material Material Mode-space method fums Subbands 3 Valput NEGF energy resolution le-3 VKGF energy resolution le-3 V Scattering Ballistic Temperature Potential threshold Voltages Voltages Voltage 0.0 Voltage limit 0.4 Voltage stepsize 0.05	Input	Method			Save
Control Subbands 3 V Save exercy potential. Subbands 3 V Save carrier density Save every 1 bias points Scattering Ballistic Convergence Temperature Temperature Potential threshold 10 Voltages Sate voltage 0.2 V Drain voltage 0.0 V Initial mixing coefficient 0.05 Voltage limit 0.4 V Voltage tensize Neprint Voltage stepsize 0.05 V Periodic device k points 5	Device Material	Mada-space method	fume	_	Z Save electric potential
Output Subbands 3 • • Save called ca	Control	Mode-space method			V Save electric potential
NEGF energy resolution 1e-3 eV Save every 1 bids points Scattering Ballistic Convergence Temperature 300 K Voltages viadaptive mixing Gate voltage 0.2 V Drain voltage 0.0 V Iterate over Drain 0.4 V Voltage stepsize 0.05 V Periodic device k points gg<	Output	Subbands	3		Save carrier density
Scattering Ballistic Convergence Temperature Oo K Voltages O V Gate voltage 0.2 V Drain voltage 0.0 V Iterate over Drain V Voltage limit 0.4 V Voltage stepsize 0.05 V Baulistic Voltage Scattering Voltage tumit 0.4 V Voltage stepsize 0.05 V Gags Output Warnings		NEGF energy resoluti	on 1e-3	eV	Save every I bias points
Temperature Potential threshold 1e-4 V Temperature 300 K Nitial mixing coefficient 0.0 % Voltages 0.2 V Nitial mixing coefficient 0.05 V Gate voltage 0.2 V Nitial mixing coefficient 0.01 Max. mixing coefficient 0.3 Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5 ogs Output Warnings Variang Variang Variang Variang		Scattering	Ballistic	•	Convergence
Temperature 300 K Voltages O.2 V Gate voltage O.2 V Drain voltage O.0 V Iterate over Train V Voltage stepsize O.5 V Periodic device k points 5		Temperature			Potential threshold 1e-4 V
Voltages 0.2 V Gate voltage 0.2 V Drain voltage 0.0 V Iterate over Drain V Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5		Temperature 300 K			Carrier Dens. threshold 1.0 %
Voltages Gate voltage 0.2 V Drain voltage 0.0 V Iterate over Drain Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5 Periodic device k points 5					Initial mixing coefficient 0.05
Gate voltage 0.2 V Drain voltage 0.0 V Iterate over Drain V Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5		Voltages			V Adaptive mixing
Drain voltage 0.0 V Iterate over Drain Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5		Gate voltage 0.2	v		Min mixing coefficient 0.01
Iterate over Drain Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5		Drain voltage 0.0	V		Max mixing coefficient 0.2
Voltage limit 0.4 V Voltage stepsize 0.05 V Periodic device k points 5		Iterate over Dra	in 🔹		Max. mixing coefficient 0.5
Voltage stepsize 0.05 V Periodic device k points 5		Voltage limit 0.4	v		k points
ogs Output Warnings		Voltage stepsize 0.05	5 V		Periodic device k points 5
ogs Output Warnings					
	ogs Output Warnings				

Figure 19: Modify the Input->Control panel to set up a drain sweep simulation.

Press the Run button to begin the simulation. Upon completion, results will be available at Output->run_2 and corresponding data will be saved to a subdirectory named run_2 within your workspace directory. Additionally, a new item will be listed under Output labelled I-V curves (drain sweep); select it to display a plot of the device's $I_D - V_{DS}$ characteristics, as shown in fig. 20.

Figure 20: The I-V curves (drain sweep) panel allows visualising $I_D - V_{DS}$ characteristics.

To finalise this first tutorial, we shall illustrate how to visualise a family of drain curves using simulations performed at three different gate voltages: compute the two additional curves by increasing the value of Gate voltage to 0.3 V in the Input->Control panel and clicking Run; once this simulation has completed, perform one last simulation with a value of Gate voltage of 0.4 V. This process will generate run_3 and run_4, which will be listed in the left pane's Output section. Select Output->I-V curves (drain sweep) now to visualise the results of the last three simulations in a single plot, as shown in fig. 21. You may use the tickboxes shown left of the plot to select which curves you wish to plot and click the Refresh button to update the plot.

Figure 21: The I-V curves (drain sweep) panel allows comparing $I_D - V_{DS}$ characteristics from separate runs.

Figure 22: Ge FinFET: Schematic showing the device geometry. Red represents germanium, gray represents a low- κ dielectric, green a high- κ dielectric, yellow represents a silicon substrate, and blue the gate electrode. Regions in different shades of red represent variations in doping along the transport axis. The device is divided into several regions labelled A-D in order to describe dopant diffusion.

2 Tutorial: Germanium FinFET

In this tutorial we describe how to use \mathcal{M}^* to simulate a germanium fin field-effecttransistor (FinFET) in a tri-gate configuration using the UMS mode-space method. The device is comprised of a Ge $\langle 100 \rangle$ fin with constant trapezoidal cross-section along the transport direction with a height of 10 nm, a width of 5 nm at the base of the fin, and a width of 3 nm at the top of the fin. Figure 22 shows a schematic of the device geometry and doping profile. The device is divided into 7 regions in which we target varying carrier densities in order to model dopant diffusion into the channel: regions labelled A in the figure are doped to target a carrier concentration of 1×10^{20} cm⁻³, regions labelled B to 5×10^{19} cm⁻³, regions labelled C to 1×10^{18} cm⁻³, and region D to 1×10^{15} cm⁻³.

In order to prepare the input files for simulating such a device, launch the \mathcal{M}^* GUI and populate the three input panels as follows:

• Device select Tri-gate fin device type from the dropdown menu, set the number of regions to 7, and fill out the length of each region according to fig. 22 and as shown in fig. 23 below. Since this device's cross-sectional geometry is homogeneous, you may specify the corresponding fields for all regions at once by typing in values in the first row and clicking Set all regions. Set regions 3, 4, and 5 as Gated. Finally, set the Gridpoint spacing parameters to 0.2 nm × 0.33 nm × 1.0 nm to reduce simulation time. Before continuing, check the Preview tab to visualise your input geometry

		M* Si	mulator GUI					×
Workspace directory navigation New Open Save Sa	Run Simula	ation Stop	Quit	Worksp	ace /home/use	er/Simulations/2-G	ie_FinFET	
 Input Device Material 	Parameters Pre	eview		Gridpoint spa	cing	Surface roughnes	55	
Control Output	Device type Num. regions	Tri-gate fin 7	•	X (transport Y Z	:) 0.2 nm 0.33 nm 1.0 nm	RMS Corr. length Manual seed Autocorrelation function	0.0 0.0 • Exponentia • Gaussian	nm nm l
	Region	Length	Top Width	Bottom Width	Height	Oxide T. (sides)	Oxide T. (top)	Gated
	Set all regions 1 - Source 2 - Channel 3 - Channel 4 - Channel 5 - Channel 6 - Channel 7 - Drain	8.0 2.0 2.5 5.0 2.5 2.0 8.0	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	> > >
Logs Output Warnings								

Figure 23: In the Device panel, set the device type to Tri-gate fin with 7 regions and dimensions shown above. Make sure only regions 3 - 5 are Gated. Increase the gridpoint spacing to reduce simulation time.

- Material set the material to Ge, (010)/<100>, n-type to set the semiconductor properties across the whole device. Cycle through regions 1 7 and set target carrier densities as described above for regions labelled A D in fig. 22:
 - A: $1 \times 10^{20} \text{ cm}^{-3}$; $\varepsilon_r^{ox} = 4$
 - **B**: $5 \times 10^{19} \text{ cm}^{-3}$; $\varepsilon_r^{ox} = 4$
 - **C**: 1 × 10¹⁸ cm⁻³; $\varepsilon_r^{ox} = 20$
 - **D**: 1 × 10¹⁵ cm⁻³; $\varepsilon_r^{ox} = 20$

Additionally, set the oxide permittivity to $\varepsilon_r^{ox} = 4$ to describe a low- κ dielectric covering non-gated regions, and a value $\varepsilon_r^{ox} = 20$ in regions 3 - 5 to simulate a high- κ oxide in gated regions. Set the buried oxide (BOX) permittivity to that of silicon (i.e. $\varepsilon_r^{box} = 11.7$) to simulate a device based on the aspect-ratio-trapping (ART) heteroepitaxy technique [4]

						M* Simulator	GUI			×
V	/orkspace dire	ctory naviga	tion	21/0.25	Run Simulation	Quit	Workspace /home/user	/Simulations/2-Ge_Fi	nFET	
	New	Open	Save	odve ds	Kun Stop	Quit				
	nput Dutput			Ge, Carr Box Reg Carr Sem Oxio	(010)/<100>, n-type ier type o electi permittivity (relative) 11.7 on 7 ier density (N / cm ³) iconductor permittivity (relative) le permittivity (relative)	• he • 1.000e+20 • 16.2 4.	oles			
				Vall	eys	6	a	(. e. 1)	(1)	
				Vall	ctive mass (relative) ev 1	x (transport) 0.95	y (norizontal)	Z (Vertical)	yz (snear)	
				Vall	ey 2	0.2	0.95	0.2	inf	
				Vall	ey 3	0.2	0.2	0.95	inf	- 11
						0.001			0.050	•
Lo	gs Output	Warnings	5							

Figure 24: In the Material panel, cycle through regions to set the material properties discussed in the text above.

• Control set the mode-space method to UMS to explicitly solve the electronic structure at each slice along the transport direction for every iteration. Increase the number of subbands per valley to 10: devices with larger cross-sectional dimensions require larger values since weaker confinement effects result in smaller energy spacing between subbands. Set a gate voltage range of [-0.4, 0.40] V by specifying those values for the Gate voltage and Voltage limit fields. Specify Save and Convergence variables as shown in fig. 25 below

						M* Sim	nulate	or GUI	×
Workspace dire	ectory naviga	tion	Run Simulat	ion	Qu	uit			
New	Open	Save	Save as Run			Quit		Workspace /home/user/Simulations/2-Ge_FinFET	
New Input Output	Open	Save	Save as Run Method Mode-space met Subbands NEGF energy ret Scattering Temperature Temperature Temperature Gate voltage Drain voltage Iterate over Voltage limit Voltage stepsize	Contemporation (Contemporation) (Contemp	P	Quit Quit	eV	Workspace /home/user/Simulations/2-Ge_FinFET Save Save Save Save carrier density Save every 1 bias points Convergence Potential threshold 10 % Initial mixing coefficient 0.05 Adaptive mixing Min. mixing coefficient 0.2 k points Periodic device k points 5	
									*
	Workspace dire	Norkspace directory naviga	Morkspace directory navigation New Open Save Input Output Output Says Output Warnings	Workspace directory navigation Run Simulat New Open Save Save as Run Input Method Method Mode-space methods Subbands NEGF energy restriction Scattering Temperature Temperature Temperature Temperature Temperature Voltages Gate voltage Drain voltage Iterate over Voltage limit Voltage stepsize Sags Output Warnings	Workspace directory navigation Run Simulation New Open Save Save as Run Sto Input Method Method	Workspace directory navigation Run Simulation Quadratic constraints of the second	Method New Open Save Save as Run Stop Quit Input Output Method Method Method Mode-space method ums • Subbands 10 NEGF energy resolution 1e-3 Scattering Ballistic • Temperature Temperature Temperature Gate voltage 0.4 V Uotages Gate voltage 0.7 V Iterate over Gate • Voltage stepsize 0.05 V Sags Output Warnings	M* Simulation Quit New Open Save Save as Run Stop Quit Input Output Method Mode-space method ums • Subbands 10 NEGF energy resolution 1e-3 • eV Scattering Ballistic • Temperature Temperature Temperature 300 K Voltages Gate voltage 0.4 V Iterate over Gate • Voltage limit 0.4 V Voltage stepsize 0.05 V	Method Save as Run Stop Guit Workspace (home/user/Simulations/2-Ge_FinFET Imput Method Imput Save electric potential V Save electric potential Subbands 10 V Save every I bias points Subbands 10 V Save every I bias points Comperature Imperature 300 K V Save every I bias points Order gaze 0.4 V V Convergence V V Unaiv voltage 0.7 V

Figure 25: In the Control panel, select the mode-space method to UMS and set the number of subbands to 10. Fill out the rest of the fields with values shown.

Once you have entered and checked values, press the Run button to begin the simulation. After the first bias point has converged, you will see the first set of output data available under Output->run_0. Selecting Geometry brings up a 3D render similar to that shown in fig. 26. Note that although asymmetries can be observed in the semiconductor (red) - oxide (gray) interface as a result of the method employed for visualisation; the geometry grid employed in the simulation may not contain any asymmetries that could influence simulation results.

		M* Simulator GUI		x
Workspace directory navigation	Run Simulation	Quit		
New Open Save Save as	Run Stop	Quit	/home/user/Simulations/2-Ge_FinFE	
Input Output I-V curves (gate sweep)	etry niconductor + oxide + gate ¬	•		
Geometry View p	panel			
 Gate sweep Bias points (Vds 0.700 V) 				
Logs Output Warnings				
				×

Figure 26: Geometry of the simulated Ge FinFET. Asymmetries observed in the semiconductor-oxide interface are a visualisation artifact and not a feature of the grid employed in the simulation.

Once the simulation has completed, you may visualise all quantities discussed in the previous tutorial such as $I_D - V_{GS}$ characteristics, subthreshold swing vs. gate voltage, etc. To plot the simulated dopant distribution plot the 2D data associated with an OFF state and include the 1D carrier density profile by activating the corresponding tickbox and clicking **Refresh**, as shown in fig. 27. Note the carrier density discontinuities occurring at the boundaries across regions.

Figure 27: Local density of states and 1D carrier density profile for an OFF state.

Select the 2D data corresponding to an ON state to plot the associated local density of states and each valley's first subband; overlay both energy-resolved current and 1D carrier density profile to generate a figure similar to that shown in fig. 28. Note discontinuities in the 1D carrier density profile imposed by the doping profile have now been washed out by the larger carrier densities associated with ON states. From the energy-resolved current (red curve) and first subbands for each valley we can observe that Valley 6 does not participate in transport and could be safely ignored in the simulation without altering results. This corresponds to the Γ valley, whose low effective mass (0.041) results in a large impact of quantum confinement effects and thus a significant shift towards higher energies, rendering it irrelevant for the transport properties of this nanoscale device.

Figure 28: Local density of states, energy-resolved current, and 1D carrier density profile for an ON state.

Let us now inspect the shape of the electric potential and carrier density as the device turns ON; go into Output->run_O->Gate sweep->Threshold voltage to find an appropriate bias point to investigate.

Figure 29: Threshold voltage extraction using the linear extrapolation method for saturation region of operation (i.e. large V_{DS}).

As shown in fig. 29, a value of $V_{Th,Sat}$ close to 0.050 V is found for this device. Visualise the 3D data output for $V_{GS} = 0.050$ V to inspect the electric potential and carrier density as the device turns on: asymmetries along the transport and height directions can be observed in both quantities as a result of the applied drain-source bias and trapezoidal cross-section, respectively. Note how the isosurfaces plotted in figs. 30 and 31 reveal charge carriers begin to flow from the bottom half of the fin as the device turns ON. You may confirm carrier density increases near the top of the fin for larger values of V_{GS} by inspecting the 3D carrier density for higher ON states, as shown in fig. 32.

Figure 30: Electric potential around $V_{GS} = V_{Th,Sat}$.

	M* Simulator GUI
Workspace directory navigation New Open Save Input Input Input	Run Simulation Quit Save as Run Stop Quit Workspace /home/user/Simulations/2-Ge_FinFET Open Paraview
Output I-V curves (gate sweep) + run_0 + run_1	Data Carrier density Isosurface Value [e18 N / cm ³ Slices Slices Semetry Semiconductor + oxide + gate *

Figure 31: Carrier density around $V_{GS} = V_{Th,Sat}$. Shown isosurface corresponds to a carrier density of 10^{18} cm⁻³.

Figure 32: Carrier density when the device is in saturation region. Shown isosurface corresponds to a carrier density of 10^{18} cm⁻³.

To finish this tutorial, we explore the effect of employing the fast uncoupled-mode space approximation for simulating this device's transfer characteristics. Select Input->Control in the left pane and change the mode-space method to FUMS while maintaining the same values for all other simulation parameters; click **Run** to begin the simulation. This simulation should be significantly faster. Once completed, you will find the corresponding output data listed in Output->run_1. Select Output->I-V curves (gate sweep) in the left pane to show a comparison of $I_D - V_{GS}$ curves simulated with UMS and FUMS, as shown in fig. 33. Note how slight differences can be observed in the semilogarithmic plot only for OFF states, while differences are only noticeable in the linear scale plot for ON states. This is a consequence of the fact that differences in computed current values differ significantly more in OFF states (up to $\approx 35\%$) than in ON states (up to $\approx 10\%$). You can confirm differences in other computed quantities such as subthreshold slope and threshold voltage are negligible, making FUMS an attractive alternative for simulating certain properties of small devices with by yielding satisfactory results at a lower computational cost.

Figure 33: Transfer characteristics computed with UMS (run_0) and FUMS (run_1).

Figure 34: Si SET: Schematic showing the device geometry. Red represents silicon, gray represents silicon dioxide, and blue the gate electrode.

3 Tutorial: Silicon single-electron transistor (SET)

In this tutorial we illustrate \mathcal{M}^* 's capabilities for simulating the properties of devices whose operation inherently depends on quantum mechanical effects through a singleelectron transistor design. The device is comprised of a Si nanowire with tunnelling barriers on either side of the channel realised via geometrical constrictions. This design is inspired by ref. [5] and shown schematically in fig. 34. To set up a simulation for this device, fill out the input panels as follows:

• Device select Gate-all-around trapezoid as the device type and enter geometrical parameters in accordance with fig. 34 and as shown below in fig. 35. Note that although we shall be simulating a device with a square cross-section, this device type allows variations in width between the top and bottom portions of the geometry. Once you have finished, check the geometry corresponds to the intended design by clicking on the Preview tab

		M* 9	Simulator GUI					>
Workspace directory navigation New Open Save	Run Simul	ation Stop	Quit	Works	pace /home/	user/Simulations/3	-Si_SET	
✓ Input	Parameters Pr	eview						
Device								
Material	Device type			Gridpoint sp	acing	Surface roughnes	S	
Output				V (transpo	rt) 0.2 pm	RMS	0.0	nm
·	Device type	Gate-all-arc	ound trapezoid 👻	A (u anspo	0.2	Corr. length	0.0	nm
				Y	0.2 nm	Manual seed		
	Num, regions	5	-			Autocorrelation	Exponential	al
				Z	0.2 nm	function	 Gaussian 	
	Region	Length	Top Width	Bottom Width	Height	Oxide T. (sides)	Oxide T. (top)	Gated
	Set all regions							
	1 - Source	5.0	3.0	3.0	3.0	1.0	1.0	
	2 - Channel	1.0	1.5	1.5	1.5	1.0	1.0] 🗆 🛛
	3 - Channel	8.0	3.0	3.0	3.0	1.0	1.0	
	4 - Channel	1.0	1.5	1.5	1.5	1.0	1.0] 🗆
	5 - Drain	5.0	3.0	3.0	3.0	1.0	1.0	
Logs Output Warnings								
l								

Figure 35: In the Device panel, specify a Gate-all-around trapezoid with 5 regions and dimensions shown above. Make sure only region 3 (i.e. the device channel) is Gated.

• Material select Si, (010)/<100>, n-type and cycle through regions to set a target carrier concentration of 2×10^{20} cm⁻³ in source and drain extensions (i.e. regions 1 & 5), and zero in regions 2 - 4. Leave the default oxide relative permittivity of $\varepsilon_r = 3.9$ corresponding to SiO₂

	M* Simulator	GUI			2
Workspace directory navigation New Open Save Save	Run Simulation Quarter as Run Stop	Quit	Workspace /home	/user/Simulation	s/3-Si_SET
 Input Device Material Control Output 	Si, (010)/<100>, n-type Carrier type • electro Box permittivity (relative) 3.9 Region 1 +	▼ ns () ho	les		•
	Carrier density (N / cm³) Semiconductor permittivity (relative) Oxide permittivity (relative) Valleys Effective mass (relative)	2.000e+20 11.7 3.9 3 x (transport)	y (horizontal)	z (vertical)	yz (shear)
	Valley 1 Valley 2	0.891	0.201	0.201	inf inf
Logs Output Warnings	Valley 3	0.201	0.201	0.891	Ţ

Figure 36: In the Material panel, specify a dopant concentration of 2×10^{20} cm⁻³ in both source and drain extensions and a value of zero for all regions in between.

• Control select coupled-mode space (CMS) as the mode-space method, as required for all devices with heterogeneous cross-sectional dimensions, and 4 subbands per valley. Since this device will exhibit strong state quantisation, we need to increase the resolution of the NEGF solver in order to capture states that are very narrow in energy; increase NEGF energy resolution to 10⁻⁴ eV to ensure an adequate description of the density of states throughout the device. Furthermore, set a temperature of 77 K and a drain voltage of 0.015 V for enhanced observation of quantum effects. A gate voltage sweep of [0.0, 1.2] V in steps of 0.05 V is adequate to explore all regions of operation. Enable saving electric potentials and carrier densities, and set Save every [2] bias points to reduce disk space usage as saving data for every other bias point should provide enough data to study the device. Finally, set the same convergence parameters as in previous tutorials and shown in fig. 37

	м	* Simulator GUI		×
Workspace directory navigation New Open Save Save	Run Simulation	Quit	Workspace /home/user/Simulations/3-Si_SET	
Input Device Material Control Output	Method Mode-space method Subbands NEGF energy resolution Scattering Temperature Temperature 77 Voltages Gate voltage 0.0 Drain voltage 0.015 Iterate over Gate Voltage limit 1.2 Voltage stepsize 0.05	cms 4 4 1e-4 eV Ballistic K V V V V V V V V V V V V V V V V V V	Save ✓ Save electric potential ✓ Save carrier density Save every 2 bias points Convergence Potential threshold 1e-4 V Carrier Dens. threshold 1.0 % Initial mixing coefficient 0.05 ✓ Adaptive mixing Min. mixing coefficient 0.3 k points Periodic device k points 5	

Figure 37: In the Control panel, enter parameter values shown in the figure and discussed in the text.

When you have finished setting up all input parameters, click **Run** to begin the simulation. You may follow the simulation's progress tracking the content of the **Logs** tab in the bottom pane. You can inspect your simulation's output as it progresses and bias points are converged; once it's completed, you may plot the device's $I_D - V_{GS}$ characteristics as shown in fig. 38: note the the oscillatory behaviour observed in the linear scale plot (green curve) for $V_{GS} > 0.2$ V.

Figure 38: Si single-electron transistor's transfer characteristics at T = 77 K.

To begin investigating the properties of this device, let us calculate its threshold voltage by opening the corresponding panel Output->Threshold Voltage. You will observe the default algorithm does not correctly compute the threshold voltage as it interprets the device is turning ON around the [0.8, 1.0] V range, as shown in fig. 39. To obtain the correct threshold voltage, we need to manually set the Fitting boundaries at the bottom of the plot to indicate the linear regime corresponding to the first drain current increase observed in the plot (green curve). Enter values of 0.3 V and 0.4 V for the Lower bound and Upper bound fields, respectively, and click Refresh to obtain a plot similar to fig. 40.

Figure 39: The default V_{Th} extraction algorithm does not detect the correct settings for computing the SET's threshold voltage.

Figure 40: Setting manual fitting range allows computing the correct threshold voltage for this device.

We shall now employ 2D data panels corresponding to a few values of the gate bias to understand the nature of drain current oscillations. Figure 41 shows the local density of states (LDoS), lowest-energy subband for each valley, energy-resolved current, and quasi-Fermi level along the device; as the gate-source bias increases and the first (i.e. lowest-energy) quantised state in the channel begins aligning with occupied states in the source, the device begins to turn ON.

Figure 41: LDoS, energy-resolved current, and quasi-Fermi level for $V_{GS} = 0.2$ V.

Increasing the gate potential continues to shift states in the channel towards lower energies and the we encounter the first maximum in the $I_D - V_{GS}$ characteristics when the lowest-energy quantised state in the channel enters the source-drain bias window (fig. 42).

Figure 42: LDoS, energy-resolved current, and quasi-Fermi level for $V_{GS} = 0.5$ V.

For larger gate-source biases, conduction through the second quantised state in the channel begins as it aligns with states occupied in the source, while conduction through the first state in the channel is suppressed due to its alignment with increasingly occupied states in the drain, as depicted in fig. 43; this results in an overall reduction in the drain current observed in the $V_{GS} = [0.6, 0.75]$ V range.

Figure 43: LDoS, energy-resolved current, and quasi-Fermi level for $V_{GS} = 0.8$ V.

Further increases in the gate potential continue to suppress transport through the channel's first quantised state until it becomes irrelevant for electron transport and the second quantised state in the channel dominates instead, as shown in fig. 44.

Figure 44: LDoS, energy-resolved current, and quasi-Fermi level for $V_{GS} = 1.1$ V.

Figure 45: Si double-gate planar FET: Schematic showing the device geometry. Red represents silicon, gray represents silicon dioxide, and blue the gate electrode.

4 Tutorial: Silicon p-type planar FET

This tutorial illustrates the usage of two elements not covered in previous test cases:

- Planar devices are devices whose width is large enough that we may simulate them as effectively infinitely wide by employing periodic boundary conditions. The top portion of fig. 45 illustrates the device cross-section: we shall simulate a 1 nm-wide cell and employ k-point integration over quantities to compute the properties of an infinitely wide device. The bottom portion of the figure shows the device geometry along the transport direction: a double-gate ultra-thin body (UTB) geometry comprised of a 10 nm long channel and 8 nm long source and drain extensions
- **p-type materials** we note the effective-mass formalism is widely regarded as a crude approximation to the properties of p-type devices due to strong anisotropy, non-parabolicity & bias-dependent tunnelling between heavy hole, light hole, and split-off bands relevant to transport in devices comprised of p-type materials. While \mathcal{M}^* includes parameter sets corresponding to some p-type materials, it is recommended that more sophisticated electronic structure methods are employed when attempting to accurately predict or reproduce the behaviour of real devices

To simulate the properties of this device, open the \mathcal{M}^* GUI and populate input parameters as follows:

• Device select Double-gate planar as the device type and enter geometrical parameters in accordance with fig. 45 and as shown below in fig. 46. Once you have finished, check the geometry corresponds to the intended design by clicking on the Preview tab

		M* Sin	nulator GUI				×
Workspace directory navigation New Open Save S	Run Simul	ation Stop	Quit Quit	Workspace	/home/user/Sir	nulations/4-Si_pf	ET
 Input Device Material Control Output 	Parameters Pr Device type Device type Num. regions	Double-gate p	lanar 🔹	Gridpoint spacing X (transport) 0. Y 0.	2 nm RMS 2 nm Corr 2 nm Auto	ce roughness 5 0.0 7. length 0.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	nm nm
	Region Set all regions 1 - Source 2 - Channel 3 - Drain	Length 8.0 10.0 8.0	Width 1.0 1.0 1.0	Z 0. Height	Oxide T. (* 0.0 1.0 1.0	top) Oxide T. 1.0 1.0 1.0	(bottom) Gated
Logs Output Warnings							

Figure 46: In the Device panel, specify a Double-gate planar with 3 regions and dimensions shown above.

• Material select Si, p-type and cycle through regions to set a target carrier concentration of 1×10^{20} cm⁻³ in source and drain extensions (i.e. regions 1 & 3), and zero in region 3. Leave the default oxide relative permittivity of $\varepsilon_r = 3.9$ corresponding to SiO₂

	M* Simulator	GUI			×
Workspace directory navigation New Open Save Save	Run Simulation Qu as Run Stop	uit Quit	Norkspace /home	/user/Simulation	s/4-Si_pFET
Input Device Material Control Output	Si, p-type Carrier type O electron Box permittivity (relative) 3.9 Region 1 +	ns () ho	les		•
	Carrier density (N / cm ³) Semiconductor permittivity (relative) Oxide permittivity (relative) Valleys Effective mass (relative)	1.000e+20 11.7 3.9 3 x (transport)	y (horizontal)	z (vertical)	yz (shear)
	Valley 1 Valley 2	0.537	0.537	0.537	inf
Logs Output Warnings	Valley 3	0.234	0.234	0.234	v v

Figure 47: In the Material panel, specify a dopant concentration of 1×10^{20} cm⁻³ in both source and drain extensions and a value of zero for region 3.

Control select fast uncoupled-mode space (FUMS) as the mode-space method, as is appropriate for devices with such small cross-sectional dimensions, and subbands to 3; note that in devices employing periodic boundary conditions and k-point sampling, this corresponds to using 3 subbands per valley and per k-point. Set a gate voltage sweep covering the [0.5, -0.4] V range in steps of 0.05 V, and a drain voltage of 0.4 V. Enable saving electric potentials and carrier densities and set Save every [2] bias points to reduce disk space usage as saving data for every other bias point should provide enough data to study this device. Set the same convergence parameters as in previous tutorials and shown in fig. 48. Finally, we need to enter the amount of k-points along the width direction to incorporate periodicity into our simulation. Set Periodic device k points to 7 to perform a first run

		M* Simulat	or GUI X
Workspace directory navigation	Run Simulation	Quit	
New Open Save Save as	Run Stop	Quit	Workspace /home/user/Simulations/4-Si_pFET
✓ Input	and		Save
Device Material Mo Control	ode-space method fums	-	✓ Save electric potential ✓ Save carrier density
> Output NE	GF energy resolution 1e-3	eV	Save every 2 bias points
Tem	perature		Potential threshold 1e-4 V
Te	ages	K	Carrier Dens. threshold 1.0 % Initial mixing coefficient 0.05
Ga	te voltage 0.5 ain voltage 0.4	v v	J. Adaptive mixing Min. mixing coefficient 0.01
lte Vo	rate over Gate Itage limit -0.4	- V	k points
Va	ltage stepsize 0.05	V	Periodic device k points 7
Logs Output Warnings			

Figure 48: In the Control panel, enter parameter values shown in the figure and discussed in the text.

Click **Run** to begin the simulation. Once it has completed, you may visualise output data in the same way as covered in previous tutorials.

4.1 k-point sampling

Let us now explore the impact of varying the k-point sampling on the simulated $I_D - V_{GS}$ characteristics of this device. After completing a first simulation performed with **Periodic device k points** set to 7, run two more simulations with a lower (e.g. 5) and a higher (e.g. 9) value, respectively.³

Once all simulations have completed, you may compare their transfer characteristics by clicking on Output->I-V curves (gate sweep). Figure 49 shows a comparison between results obtained with 7 k-points and results obtained with 5 k-points; differences can be discerned especially in OFF states where current values vary more than 20%.

³Note this input parameter should always be an odd number; if an even number is specified, \mathcal{M}^* will employ the next odd number for the simulation.

Figure 49: Comparing the reference run (7 k-points) with a 5 k-point run results in noticeable differences, especially for OFF states.

Comparing results obtained with 7 k-points and 9 k-points results in a plot where both curves fully overlap across the entire gate bias range, as shown in fig. 50; the line style and symbol corresponding to the simulation with 9 k-points have been modified for clarity using the toolbar located at the top of the plot. This result indicates the simulation using 7 k-points is appropriately converged. Although wider (narrower) cell widths tend to require a lower (higher) number of k-points to reach convergence, other system properties may affect appropriate values for each system. It is highly recommended convergence with respect to this parameter is checked for each device.

Figure 50: Comparing the reference run (7 k-points) with a 9 k-point run results in curves that fully overlap across the entire gate bias range.

Finally, fig. 51 shows a comparison between curves computed with 7 k-points, and 3 k-points. In this case differences between both curves is evident in both OFF states and ON states. Note differences in OFF states tend to be larger than in ON states, as can be observed from the semilogarithmic plot.

Figure 51: Comparing the reference run (7 k-points) with a 3 k-point run results in noticeable differences in both ON and OFF states.

Figure 52: $In_{0.53}Ga_{0.47}As$ nanosheet FET: Schematic showing the device geometry. Red represents $In_{0.53}Ga_{0.47}As$, gray represents a low- κ oxide, green a high- κ oxide, and blue the gate electrode.

5 Tutorial: $In_{0.53}Ga_{0.47}As$ nanosheet FET

In this tutorial we simulate a nanosheet-based device comprised of a III-V channel material. Nanosheet device types allow simulating the properties of quasi-planar devices where effects due to the semiconductor's finite width are explicitly treated. To set up this simulation start a new \mathcal{M}^* workspace and set input parameters as:

• Device select Double-gate nanosheet as the device type and enter geometrical parameters in accordance with fig. 52 and as shown below in fig. 53. Once you have finished, check the geometry corresponds to the intended design by visualising it in the Preview tab

		M* Simu	ulator GUI				>
Workspace directory navigation New Open Save Save	Run Simul	ation Stop	Quit Quit	Workspace pm	e/user/Simulations/	/5-InGaAs_Nanos	heet_FET
 Input Device Material Control Output 	Parameters Pro Device type Device type Num. regions	eview Double-gate na 3	nosheet 🔹	Gridpoint spacing X (transport) 0.2 Y 0.2 Z 0.2	Surface roug RMS Corr. lengti nm Manual see Autocorrela function	hness 0.0 h 0.0 d ation © Exponent O Gaussian	nm nm iial
	Region Set all regions 1 - Source 2 - Channel 3 - Drain	Length 8.0 10.0 8.0	Width 10.0 10.0 10.0	Height 3.0 3.0 3.0 3.0	Oxide T. (sides) 2.0 2.0 2.0 2.0	Oxide T. (top) 2.0 2.0 2.0 2.0	Gated
Logs Output Warnings							

Figure 53: In the Device panel, specify a Double-gate nanosheet with 3 regions and dimensions shown above.

Material select In(0.53)Ga(0.47)As, (010)/<100>, n-type and cycle through regions to set a target carrier concentration of 5 × 10¹⁹ cm⁻³ in source and drain extensions (i.e. regions 1 & 3), and zero in region 3. Input an oxide relative permittivity of ε_r = 4.0 (low-κ oxide) in source and drain extensions, and a value ε_r = 20.0 (high-κ oxide) in the channel. The low-κ oxide will reduce capacitive coupling between the gate electrode and source/drain extension regions

	M* Simulator	GUI				×
Workspace directory navigation New Open Save	Run Simulation Qu as Run Stop	uit Quit	Workspace ome/us	ser/Simulations/5·	-InGaAs_Nanosheet_	FET
 Input Device Material Control Output 	In(0.53)Ga(0.47)As, (010)/<100>, n Carrier type electron Box permittivity (relative) 3.9 Region 1 +	type •	les			
	Carrier density (N / cm³) Semiconductor permittivity (relative) Oxide permittivity (relative) Valleys Effective mass (relative)	5.000e+19 14.1 4. 6 x (transport)	y (horizontal)	z (vertical)	yz (shear)	
	Valley 1 Valley 2	1.21 0.193	0.193	0.193	inf	
	Valley 3	0.193	0.193	1.21	inf	
Logs Output Warnings						

Figure 54: In the Material panel, specify a carrier concentration of 5×10^{19} cm⁻³ and an oxide relative permittivity $\varepsilon_r = 4.0$ in both source and drain extensions, and a zero carrier concentration and $\varepsilon_r = 20.0$ in the channel.

• Control select fast uncoupled-mode space (FUMS) as the mode-space method, and subbands to 6. Set a gate voltage sweep covering the [0.0, 0.85] V range in steps of 0.05 V, and a drain voltage of 0.05 V. Enable saving electric potentials and carrier densities and set Save every [2] bias points to reduce disk space usage. Set the same convergence parameters as in previous tutorials and shown in fig. 55

Workspace directory navigation Run Simulation Quit Workspace me/user/Simulations/5-InGaAs_Nanosheet_FET New Open Save Save as Run Stop Quit Workspace me/user/Simulations/5-InGaAs_Nanosheet_FET Imput Device Material Method Imms I Save Control Mode-space method fums I Save electric potential Save every I Dias points Output NEGF energy resolution le-3 V Save every I Dias points Temperature Temperature Temperature Potential threshold le-4 V Voltages Gate voltage 0.2 V Drain voltage 0.05 V Iterate over Gate Iterate over Gate Iterate over Gate Image Naming coefficient 0.01 Min. mixing coefficient 0.3 Iterate Iterate Image Kpoints
Input Device Material Method Save Control Mode-space method fums Subbands 6 NEGF energy resolution 1e-3 eV Scattering Ballistic Convergence Temperature Temperature Potential threshold 1e-4 Voltages Q V Carrier Dens. threshold 1.0 Voltage 0.2 V Min. mixing coefficient 0.01 Max. mixing coefficient 0.3 Method Max. mixing coefficient 0.3
Voltage limit 0.85 V Voltage stepsize 0.05 V Logs Output Warnings

Figure 55: In the Control panel, enter parameter values shown in the figure and discussed in the text.

Click Run to begin the simulation. Once completed, you may visualise the 3D quantities to observe the influence of the device's finite width on both electric potential and carrier density, as shown in figs. 56 and 57 for an ON state.

Next, inspect 2D data for various bias point to visualise plots similar to figs. 58 and 59 (OFF and ON states, respectively). We can observe that the properties of this device are dominated by valleys 1 - 3, corresponding to the three X valleys in In_{0.53}Ga_{0.47}As. The significantly lower effective masses of valleys 4 & 5 (L valleys), and valley 6 (Γ valley) along cross-sectional dimensions result in larger confinement-induced shifts to their associated subbands towards higher energies, rendering their impact on the properties of this device negligible.

	M* Simulator GUI	×
Workspace directory navigation New Open Save Save as	Run Simulation Quit Run Stop Quit Workspace /home/user/Simulations/5-InGaAs_Nanosheet_FET	
 Input Output	Open Paraview ta View panel Electric potential view ssurface v Show all Range 0.775 0.707 0.638	
2D data G + Vgs 0.700 V + Vgs 0.800 V Logs Output Warnings	ometry Semiconductor + oxide + gate -	

Figure 56: Electric potential at $V_{GS} = 0.6$ V (ON state).

Figure 57: Carrier density at $V_{GS} = 0.6$ V (ON state). Note the range for the contour plot has been manually set to $[10^{15}, 10^{20}]$ cm⁻³

Figure 58: Local density of states, lowest subband for each valley, and energy-resolved current at $V_{GS} = 0.0$ V (OFF state).

Figure 59: Local density of states, lowest subband for each valley, and energy-resolved current at $V_{GS} = 0.6$ V (ON state).

To explore the geometrical dependence of confinement-induced energy shifts and their impact on device operation, let us simulate a similar device with a thicker channel:

- **Device** edit the device geometry by modifying the value of Height fields with a value of 6 nm for all three regions
- **Control** edit the gate voltage sweep range to [-0.2, 0.85] V to cover more OFF states

Click Run to begin the simulation. Once finished, let us make identifying both devices easier by renaming run_0 to H=3nm, and run_1 to H=6nm. We begin our analysis by visualising the corresponding I-V characteristics, shown in fig. 60. Note the device appears to turn ON in two stages with a first contribution appearing for $V_{GS} > 0.2$ V, and a second contribution for $V_{GS} > 0.6$ V.

Plotting 2D data for $V_{GS} = 0.2$ V illustrates device operation around the point where the first contribution begins. Figure 61 shows the device begins turning ON when the bottom subband in valley 6 (Γ valley) comes in alignment with the source's Fermi level. Note that valley 6 is lower in energy in this device and the first subband in all six valleys lie at energies below 0.2 eV above the source Fermi level, making them all relevant to this device's properties. The reduced confinement in this structure with larger cross-sectional dimensions has dramatically changed the electronic structure compared to the device based on a nanosheet with 3 nm height.

Figure 62 shows the 2D data panel for $V_{GS} = 0.6$ V. The energy-resolved current reveals that the second contribution observed in the I-V characteristics occurs for gate bias values high enough such that valleys 1 - 3 (i.e. X valleys) in the channel are aligned with the Fermi level at the source.

Figure 60: $I_D - V_{GS}$ characteristics for device with 6 nm height.

Figure 61: Local density of states, lowest subband for each valley, and energy-resolved current for the thicker device at $V_{GS} = 0.2$ V (ON state).

Figure 62: Local density of states, lowest subband for each valley, and energy-resolved current for the thicker device at $V_{GS} = 0.6$ V (ON state).

In order to compare both devices' in a more meaningful manner, let us shift their I-V characteristics by their respective threshold voltages. Extracting the threshold voltage of the device with H= 3 nm should be straightforward, resulting in a value of $V_{Th,Lin} = 0.555$ V (fig. 63). Attempting to obtain a threshold voltage value for the thicker device requires some tweaking: by default, \mathcal{M}^* attempts a fit around the point of maximum conductance $(g_m, \text{ right axis in fig. 64})$. Manually enter lower and upper bounds of [0.25, 0.35] V and click Refresh to recalculate a fit around the first conductivity maximum to obtain a more appropriate value of $V_{Th,Lin} = 0.138$ V, as shown in fig. 64. Finally, click on Output->I-V curves (gate sweep) and enter shift values corresponding to each device's $-V_{Th,Lin}$ (with opposite sign) to align their threshold voltage with $V_G = 0$ V. Click Refresh to generate a plot similar to fig. 65.

Figure 63: Threshold voltage extraction for the device based on a nanosheet with a height of 3 nm.

Figure 64: Threshold voltage extraction for the device based on a nanosheet with a height of 6 nm. Note that a manual range has been specified for the fit.

Figure 65: Comparison of both nanosheet device's transfer characteristics. Curves have been shifted such that their threshold voltage aligns with $V_G = 0$ V.

Figure 65 shows that the thicker device exhibits a larger subthreshold swing, and a lower ON current at the same overdrive voltage $V_{OV} = V_{GS} - V_{Th}$.⁴ Comparing subthreshold swing values computed for both devices quantifies observed differences with the thicker device surpassing 100 mV/dec, while the thinner device exhibits values below 70 mV/dec. Inspecting 2D data for the thicker device's OFF states reveals the main reason behind this significantly different behaviour: OFF currents are dominated by source-to-drain current (e.g. fig. 66) whereas the thinner device's OFF currents are dominated by thermionic emission (e.g. fig. 58). This contrast is largely a consequence of the Γ valley's lower effective mass value along the transport direction.

⁴The horizontal axis' label has been manually set to V_{OV} using the toolbar at the top of the plot.

Figure 66: Local density of states, lowest subband for each valley, and energy-resolved current for the thicker device at $V_{GS} = -0.2$ V (OFF state).

6 Tutorial: Scattering in silicon nanowire FET

In this last test case we cover the inclusion of two types of scattering into \mathcal{M}^* simulations: acoustic phonon scattering, and surface roughness scattering. We will employ the silicon nanowire FET structure simulated in section 1 with a channel length of 10 nm.

- If you have already followed the silicon nanowire FET tutorial, click **Open** in the \mathcal{M}^* GUI's top pane and select the corresponding workspace's top folder to load all associated data and append the results from this tutorial into it
- If you have not yet followed the silicon nanowire FET tutorial, click Open in the \mathcal{M}^* GUI's top pane and select an empty folder. See section 1 for instructions on how to set up the input parameters for a ballistic simulation

6.1 Acoustic phonon scattering

Using input parameters employed for the first simulation described in section 1 as a starting point, click on Input->Control and set Scattering: Acoustic, as shown below. Click Run to begin the simulation.

	Μ	1* Simulator GUI			×
Workspace directory navigation New Open Save Save	Run Simulation	Quit		Workspace /home/user/Simulations/1-Si_NWFET	
 Input Device Material Control Output 	Method Mode-space method Subbands NEGF energy resolution Scattering Temperature Temperature Temperature 300 Voltages Gate voltage Octa voltage Octa voltage Octa Voltage 0.4 Iterate over Gate Voltage limit Octa Voltage stepsize Octa	fums * 3 * 1e-3 * Acoustic * K * K * V * V * V * V * V * V * V * V * V * V * V * V * V *] eV	Save Save electric potential Save carrier density Save every 1 bias points Convergence Potential threshold 1.0 % Initial mixing coefficient 0.05 ✓ Adaptive mixing Min. mixing coefficient 0.01 Max. mixing coefficient 0.3 k points Periodic device k points 5	

Figure 67: In the Control panel, select Acoustic from the Scattering dropdown menu.

Once finished, you can compare the effects of including acoustic phonon scattering in your simulation. In Output->I-V curves (gate sweep), compare transfer characteristics by selecting only this most recent simulation and its corresponding ballistic equivalent from the list on the left. Figure 68 shows the resulting plot; although both curves exhibit the same general characteristics and subthreshold slope, the simulation including scattering from acoustic phonons shows lower current. Inspection of the data shows scattering lowers the drain current, with larger drops observed for ON states.

Figure 68: Transfer characteristics of silicon nanowire FET with acoustic phonon scattering, and in the ballistic approximation.

6.2 Surface roughness scattering

To include the scattering induced by surface roughness in your simulation, \mathcal{M}^* explicitly generates a surface roughness profile along your device. This approach is preferred to employing ensemble averages for short-channel devices where lengths may not allow for statistical averages to hold; furthermore, this methodology allows studying variations between different individual devices in more detail.

To enable roughness in your device geometry, click on Input->Device and find the Surface roughness variables at the top right. As shown in fig. 69, we shall input an RMS amplitude of 0.2 nm, a correlation length of 1.0 nm and choose an exponential autocorrelation function for the generation of the profile. The Manual seed field allows some control over the random number generator employed when generating the profile; input a value of 10 to obtain the same profile studied in this tutorial or leave blank to

use a seed based on your system's clock.⁵

New Open Save	Save as Run	Stop Quit		Workspace /hor	ne/user/Simulations/1	-Si_NWFET		
Input Device	Parameters Pr	eview						
Material	Device type		Gridp	oint spacing		Surface roughnes	s	
Control • Output	Device type	Gate-all-around cylinder	X (t	ransport) 0.2	nm	RMS Corr. length	0.2	nm
	Dence type		Y	0.2	nm	Manual seed	10	
	Num. regions	3	Z	0.2	nm	function	 Exponential Gaussian 	
	Region	Length		Radius		Oxide Thickness		Gate
	Set all regions							
	1 - Source	8.0		1.5		1.0		
	2 - Channel	10.0		1.5		1.0		•
	3 - Drain	8.0		1.5] 1.0		
ogs Output Warnings								

Figure 69: In the Device panel, input variables shown above in the Surface roughness section at the top right.

Finally, click on Input->Control and select CMS as mode-space method; crosssectional inhomogeneities produced by the roughness profile require coupling between modes in adjacent slices to be explicitly computed. Ensure Scattering is set to ballistic in order to be able study the effects of surface roughness and acoustic scattering separately later on. Click Run when you are ready to begin the simulation.

 $^{^{5}}$ Note: the geometry preview tab does not show surface roughness profiles; you may only visualise the structure including surface roughness in the Output section.

		M* Simulator G	iui ×
Workspace directory navigation New Open Save Save	Run Simulation	Quit Op Quit	Workspace //home/user/Simulations/1-Si_NWFET
Input Device Material Control Output Ugg Output Warnings	Method Mode-space method Subbands NEGF energy resolution Scattering Temperature Temperature Temperature Otoltage Gate voltage Drain voltage Drain voltage Otage limit Voltage stepsize Voltage stepsize Otoltage	fums	Save ✓ Save electric potential ✓ Save carrier density Save every 1 bias points Convergence Potential threshold 1e-4 V Carrier Dens. threshold 1.0 % Initial mixing coefficient 0.0 ✓ Adaptive mixing Min. mixing coefficient 0.0 k points Periodic device k points 5

Figure 70: In the Control panel, select the CMS mode-space method and ballistic scattering.

You may visualise the geometry output once a first bias point has converged (Figure 71). Note only the device channel exhibits a roughness profile. In general, surface roughness profiles are generated for all device regions except source and drain extensions (i.e. first and last geometry regions).

Figure 71: Geometry (semiconductor only) of simulated device including surface roughness profile in the channel.

Once your simulation has completed, you may include $I_D - V_{GS}$ characteristics in the comparison performed in the previous section. Compare transfer characteristics using **Output->I-V curves (gate sweep)** by selecting both curves plotted in fig. 68 and the surface roughness curve. Figure 72 shows a comparison between the three cases: ballistic, acoustic phonon scattering, and surface roughness scattering; it is clear that scattering induced by the surface roughness profile is larger than that induced by acoustic phonon modes. Note that curves have been shifted by their threshold voltage in order to compare them in a meaningful way, as illustrated in the previous tutorial.

Figure 72: Shifting curves to make threshold voltages coincide allows meaningful comparisons. The simulated surface roughness profile degrades current more than acoustic phonon scattering in the smooth device.

To finalise this tutorial, let us investigate the effects of both types of scattering on carrier density throughout the device, energy-resolved current, and local density of states. Figures 73 to 75 show the corresponding 2D data plots near their threshold voltages. Note limits on energy-resolved horizontal axes have been edited using each plot's toolbar in order to facilitate comparisons.

- Acoustic phonon scattering reduces oscillations and resonances in the LDoS, resulting in a smoothed contour plot when compared to the ballistic case. Back scattering of carriers by phonon modes results in a reduction of carrier density in the channel, as well as a reduced energy-resolved current
- Surface roughness scattering reduces oscillations and resonances in the LDoS, similar to the acoustic phonon scattering case. Variations in subband energies across different slices result in channel regions with localised states, shown as darker regions in the LDoS plot; their impact can also be observed as fluctuations in the carrier density along the channel not present in the smooth device. Local barriers induced by subband energy variations impose tunnelling barriers on carriers travelling through certain regions of the channel and reduce the magnitude of the energy-resolved current.

Figure 73: Local density of states and energy-resolved current for the ballistic simulation near its threshold voltage.

Figure 74: Local density of states and energy-resolved current for the simulation with acoustic phonon scattering near its threshold voltage.

Figure 75: Local density of states and energy-resolved current for the simulation including surface roughness near its threshold voltage.

References

- D. K. Schroder, Semiconductor Material and Device Characterization. John Wiley & Sons, Inc., apr 2005.
- [2] U. Ayachit, *The ParaView Guide: A Parallel Visualization Application*. Kitware, Incorporated, 2015.
- [3] "https://www.paraview.org/."
- [4] J.-S. Park, J. Bai, M. Curtin, B. Adekore, M. Carroll, and A. Lochtefeld, "Defect reduction of selective ge epitaxy in trenches on si(001) substrates using aspect ratio trapping," *Applied Physics Letters*, vol. 90, p. 052113, jan 2007.
- [5] N. D. Akhavan, A. Afzalian, C.-W. Lee, R. Yan, I. Ferain, P. Razavi, R. Yu, G. Fagas, and J.-P. Colinge, "Nanowire to single-electron transistor transition in trigate SOI MOSFETs," *IEEE Transactions on Electron Devices*, vol. 58, pp. 26–32, jan 2011.

